Lecture Week No. 2

9

											<u>}</u>	
Experimental Lectures	Lecture 6: Squeezed States of Light	Lecture 7: Thermal Noise		Lecture 8: Quantum Noise in GW Detectors		Lecture 9: Thermal Noise Danzmann			Lecture 10: Introduction to Optomechanics		5 Tests of Quantum Mechanics	
	Schnabel	Dan	zmann	Schnabel	inabel Danzr		zmann		Hammerer		Aspelmeyer	
General Relativity	Linearized theory, Generation on detect in lin		Lecture 7 Generation in linearize Schutz	on of GWs Bla		< holes I Bl		Bla	nck holes II Sp		Lecture 10: Spherical stars Schutz	
Data Analysis	Lecture 6: - Probability as extended logic *Cox's desiderata *The 3 laws of probability *Bayes' theorem - worked example: estimating the "bias of a coin"		ecture 7: Hypothesis esting Bayes factor oosterior odds Classical ramework: leyman- earson optimality Neyman- earson emma	-'Build r, coaleso search -Discre transfo -CBC cl in time freque domain -Match for CBO -Horizo	Lecture 8: -'Build your ow coalescing bina search' -Discrete Fouri transform -CBC chirp sign in time and frequency domain -Matched filte for CBC signals -Horizon distance		Lecture - Applica wn Detectin nary noise *simple rier hypothe *Bayesia nal margina maximu methods *genera er Pearson s *[parar estimati		ation: g signals in vs composite ses an lization vs m-likelihood s lized Neyman- theorem meter	-M bai coi -No sig tes -Da -Da est -In	Lecture 10: Matches, template banks and coincidence testing Non-Gaussian noise: signal consistency tests Data quality vetoes Background estimation Inference on astrophysical rates	
	Prix	P	Prix	Dent	Dent			Prix			Dent	